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pmuiblo Mnnr ’bo\maary ln.yu- ﬂ.cv h.n vesn o:tminly stud:lod. by m~_
' a.umors on. tho ua\uption that. boundery layer flon are ouontid.ly nsral

m mnity a 'tvo a..mo...; n-.u mtu-bm-

"’,..'.._;;.__" e e "“‘—‘r—"—:: .‘-’:‘:—.....W ¥:1T;__:;2_
e SR R IR T R S S A el

lel flovs, (references, 1, 2, 3, b; and 5)s Their rg,s_rilta sgres fairly
well vith ths available. experhex_xtal da.ta., (reference 36). In ro,f'o:;encu
7 and. 8, the stability iavestigaticn is extended to the laminar bowsdary
leayer in & comnpressible fluid. Tho direct. effect of the local pressure
.graaieﬁt on the calsulation of the stability limits for ircompressible
boundary layer flow has been shown in reference 9 to be negligible under
the approximation &R << ] , if the local velocity profile is used in the
stebility calculation. It has also been pointed out in reference 8 that
the -eﬁ‘e‘ct of the local pressure gradient in the compressible case can be
expected to behave likewise. However, the agsimption that the vertical
wvelocity ceqponem; in the boundary layexr flow plays negligible rols haa not

,

received -careful attention.
It 18 questioned in reference 10 whethsr the boundary layer Liowr N
can be cusidsrod as & parallel flow and whether the gradients in the ma..n
streen Qire_etian have nogligib},a affects in the m:t,tgation o:g t_hg 31;.9'9:_14.-
ity of the m;w.ll disturbances in the lanimr bdw layer. ‘There 1is & o
‘qualitative argument that undsry ihe Prandtl boundary lsyer epproximstion;
the variation of thé mean flow properties in the x‘e:éairoction, within a _te),r‘
vavs lengi:.hs of the disturbance is of ths order of 'i%é » which is negligibly
Bmall compared to unity. Thervefors the, contributions of guch terms in the

stability celeulation can be neglected as higher order srall quantities.




'm- Xind of arg\nont nhonld be mvostigatod ROY'S: dhuly‘-o ta.. u t>he

vort:lal voloc:lty cc-ponnnt is conoo;md o*nh though the urf.iul. viloc;ty _

" cowponent s a awell quantity of the oRler of - . e vertiost velogity —
e ' o ‘ - e

component produces s momentum transfer and sn energy transfer across the

‘bourkdary layer whers both the disturbanie quantities snd the mean flow . ’ ;
properties vary rapidly. The nat effect of the transport processes may )
thus be much larger than the magnitude of the swall agent that produces the : E

transport processes. Although the vertical velocity componsnt of the flow N ;
and the gradients of the flow properties in the x-direction are small quan- o
tities of the seme order the net effect of the former in the stability cal-

culation may be much more important then that of the latter. The present }
analysis verified this argument. It is shown that the vertical velocity ]
component is the most critical factor that is neglected in pre;ious analysis

. of the stebility of tlie laminar boundary layer flow.
. Becauss of tha ingenious selecticn of the solutions of the dis-
turbance amplitude functions made by the prévicus investigators, the ver g
£1cal veleoity component does mot emter imto the stebility calculaticsi im i

|

£irst epproximetion. In all these schemes the stability of the two dimen~

sional small disturbances in laminer boundary leyer flow is dsterainsd only
by the local flow properties in Pirst epproximation. For higher Apprixime
‘ations or for higher Mach mmbers of the £lov whers the effect of vertical -

velocity is no longer small this statement is not correct. g
Y
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!nu systen of aiﬁmnebl oqmtionn for tbn dlltur :

‘ tibi:ﬁ is Abtnmd fiom ’ T T
N . U e <
T e £1) Eguation of mmss contimity _ RO

(2) Two equations of momentum, i.e.; l!amr Stokes equation 1
in tvo dimensional form.. ; ‘ \ 4_

e

= (3) Equation of energy belance
. ‘:('ii‘)’ Equation-of state of an idesl gas
We shall take into account the variation of ,viscosity and thermal ‘conduce.-' ~
S oo t-:lv;t-y coefficients but psglect the variations of the specific heats with
| temperature in the boundary layer. Symbols ares moatly aldoplsd from rof-
arencs 7 to facilitate -comparison. Superscript (#) is used to indicate. _

2

% . :
physical quantities and subscript (o) is ured to denote free stream values

T _ of the quantities. Subséript (c) denotes that the quantity is .evaluated

{——

o at. the criticallayer where w = c. ' : ~ o

_‘ Curvilinéar coordinates are taken with x as the length along the . .
wall and y normel to the wall, nondimensionalized by the thickness of i
i
|
the no,z_mdary layer. The dimensichless: pu'mtara Are doﬁnod an 1
. 1: Reynolds Muber HEVEE |
: o = fEe ST
. :20. M m&r M = vl /A‘,R To ‘ -' - -“::

S "3, Prapdtl Number a = Sphe /E*
P - %s Froude Nurber is assumed to be infinitely large so that the :

& effect of the acceleration dus gravity is neglected.
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= XM'R-P 4 [lq‘(ur)x '.i(y;—ﬂr)(u,,f\rs')}x.;. f Fl(uj‘fsf’)}”]

(2)

2nd momentum: PuL + Puly * puly
= -4 b+ [{ (u-\-\S‘)}* ( U‘)-(»_ (
go Py mo {pugrsal, « 2 p Sleepecgl] @
Energy
f'[Tt"'“_Tx + Uy ]
=~ () Chuxt pYy)
+ l(";”ML[ZF’iu:* %(f‘z‘l".t)(_ux* \ﬁ‘)u,(*' ".',"U:S
: e ‘

+ Fpampocuxevy) Gy + 2o 4 puuges)t

state  f = pT . : _ §5)"
Here subscript x or y means partial difterentia.tion with respect to x or y.
P is the first viscosity coefficient and ¢, is the second
or the bulk modulus of viscosity, and P2 will be zoro i_.;“ ‘the. Stokes' re-
lation s valid. With the asewption that p* and K are functions of
temperature only and that both Cj and o are constant, ve kuow thet
and K in dimensionless form are identical. Thus in the energy equation
ik 1is replaced by P and both the variations of Kk and p are given
by the wvaristions of temperature multiplied by %.%_" :

In equations (1) to (5) replace each of the oscillating quantities

by the sua of the time independent mean quantity end a small oscillation

EY

e -

ST R,

g s



Mecumnom uvritiu, ﬂumqunﬁtyu
( ,,nmugor g(x;n;t)‘

S ﬂu sui ot rcw» * J:tx,s\ e® mro z-wﬂx-‘-“ o
R ‘ = . 'z,-r'-‘ ) ?§F~1A;'fi‘i‘
. uth o(-nn nmor of the ucimtic: = yave longth L
R spd¢® Cpt a.ndbcth cmand c; are real, Tha sxplitude funotions BE
S r(x.y)htmw Cr smntwmumiwdmnnu o o
’ ' obn’r,v,d by an observer on the wall, amd C; is roh.te& to the a.;:.gmtm 3
) .
factor so that c,;% 0 determineé whather the disturbence is aaplified | ;
R :
: As the amplitudes of the small perturbation gquantities are assumed
. ¢ .
PR small; we shall neglect all the terms containing the produet or square of
2. these mmall perturbation emplitudes. Those torms containing only the meaxn
‘, o flow guantities satisfy the system of equations (1) to (5) by themselves and
LT T thn‘r‘oforo drop out. of the disturbance equations. We then obtain the following -
: limarizod system of differential equations for the porturhtion amplitude
- - fuactions. :
" Continuity: E
B ily + v ﬂl | ) ' XY »
(Q’:t-,,éfJ * g)z , N 45" L2 oy . (6’ :
IR R A 1 B A | {‘
L Py Nomenvum: T
S vy s r@1 +e[Fuwx+arfi+ T + [ ]
4 e 0{39(4,(13352 ‘S' + W 7] S[ X ‘gx AW ,
R = - e (kT
S % [t pd e 2iti *§)+<"'«-ﬂz‘i°‘f‘?x*~°‘?’+r‘f ']
' P 4T
. vk 3&[“«-1,-\—( ,tuo(fs*«-(c-\)“\',(d‘f*d“r(‘g x+Adk8) f]
“+ ER: i&({é’-*‘-ﬂww ?5'(1--)«5” }\(eﬁkde)‘v(«&*—w )9'3
Apt A ZP)wWle '
\\V -+ f%‘;d'r [( -r——'t)qﬁ'u -o-MT’w—(B T)‘\&]G (7
. %
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Energy: ) ) J
& dp A O+ T+ gLO6x4 V0 T T+ (rres Tk | }
| = -0 LpC furisfraq) v ] | o
’ ' r‘m""l— 5(1“ &y_u-.-,,t.ur (§4 4§ Y+ AV'E'] | ’ 5
| . ,(g_-.,mdqmg,um | K
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e rm v te**rtﬂ mnirtx -
LT aemoten the setio of 4o 4B | vartations of tue vistonity scaf-
!_'uie_ntl have bou r»luub the corresp

nding varistions in temperaturs.

!huo amm. equations { {6) to (S) arde pa.rtul urm-mm ,
equations with two independent spetial varisbles x and y. The time coor-
ainate has been seperated by investigating thé stability of the periodic
aolutions of tha Sxpoasitial ‘%T]‘n oxp[4 ol (xs&t )] variation of the

d:lltu.bmc bag been separated into two parts; s £23t Werying part dspends
iyug on the frequansy of the disturbance and & slowly varying pert depending
on the decay or ths growth of the amplitude of the oscillation, It is the
sloily‘mying part thet enters equations (6) to (10). In view of the fact
that the length ¢n thxdiroctionieurymhhrgorthmtbcomspom~

ing lengthi in the y direction for the same order of magnituds of the changs

- of these amplitude functions, ve may consider all those x gradients es in-

. dopondmt of x in ths first approrimation. In othér words e can consider
bqu’ntiom {6) to (9) as a set of ordinary differshtial equations with y as
tho only indeépendent variable. Thus we have four lineer haommul orun
ary ditfomtm oquations and an algebraic equation of state for tie tin
mhbhc-f 9. N~ R €. The snalytic nature of these equations is almt

“uu ‘wame as that. cr Mmme 7 where the vertical velocity cmpomnt a.nd |

been slightly modified is the continuity oquation vhere X’ is brought into
the aqwtion by ths vertical velocity componant so that the. coatinuity equa~

tioa becomes a firet order ordinary differential eguation of both v?
“and X instead of ? alons. Tke equation of

5
A S . W ¥ S




kT

= %
With equations (ll, and (12) equation of continuity (9) becomes:
ZL} - 4335.

s i+ STz, - £3)

°‘. P

-5 2
- S (i SRR CJ v (x9S
ot[ﬁ;_zgw 2> E T+ (X -5 %]
- do Lg%+ gt %~ £ 25)]

Tho firat ﬁaaentm eqmtion becomes:
dz, ?‘9‘  [piew~<aR + Pu'Ez+d 7"]
< RQ el .4

/4' - ” -gl’?e -bx (

4+ “ v u )(1‘3-2‘4 S"ZS)*‘ ZTX

r(

B2 (w0
= (4*:3&%)( zn(x 24 Zcx - o z‘e) ‘(‘L"“F )(zux"'""(za)

- (13)

()

ég—ﬂ'[( ,,.‘ DT Byt L Z) + Z (1) Ty & E, +olr' (23,{1»,20(23)*‘1"22] N

d Q)\ ,_(u"“'c‘wx z(’g—D\f'](zsx*"’d A'.5)

du [(_\r A1 )Z6+ {(“ +-—1’:)"Jxx4' (,O"I-Q(-L-\- T\"r'gzg}
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D et _!.3;0 s _coni'mntm nqmtlon bocma ,

RE- TN pe

S ’_f%"—“‘ze —E‘[(&*""‘) & (%*%ﬁ)«ii’;—o&iZsjgo‘c’?[xupacz)gﬂ

. = ~od (S Eed Ba) = P E, - o P Tag(0 G =0’ )] i~ 2]
%g[( +3£ };(lc) By + 2,&0(2_4,3,3"‘, + o Z'-s-xx]f
L * éﬁ’""—'%’["”‘wﬁdis* FE-OTUR 4 (Fe30)Ta Ba]
y - d 4 . ' ’ 5
j-.{; aé‘;{frxa( Byt ok By +AT 2, )+ 3 (@) T Z, +(Vgand) zsx]
5 Fe's 2, ] 2
a3 5T (F+ Frrw ] zs}
" . ) (16).
Substituting the expression for Z,+iZ, ®rom sguation (14)
L+ °© _  into the ensrey equation (9) we obtain,
- | é%é = ?F'd&ﬁf {A,(w-c) zsn-zﬁ (Y-t. ”’;234, L(wsd;m";':.{ }]

% U’Re[v{(M Ry~ §E)-Toiz, e (- £) o)
| « vl Z’? §R5)+T axl(gz"*w‘z"—ﬂiﬁ]
el R,_[(&*rx-&- \h-) 27 = 25) + §0Fg, + §VE, +S°T“ %)

*ap

e S FR ez« pZ]

) " ‘ ' “+ “Z "z;‘-dnSx 'zsxx
| ‘ [ Zs.+,z'r Eot ZTx(25x+4°(Zs)+Txx Z&‘]

.\ T D AW 4 H_l- AT (Bt AdZ )+-(L‘}-\)u‘: AR,

2 -—(‘o’-q)g—y\,[{,(% ’*F),zw + ( ) f( x ! % O Rgy
+(6‘; ﬁ})z,o(\f‘zh +,z(¢c'+¢xii%,_+o(i’3x—(%o( EBJ]
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‘ ° zqmuou (13) ana (17) are the aight .ema.tim for the asmmu- E
S f%ion of to elght wimovn quentities Z; vithislZ, o . 8. e éaixtm- "\;
“ ulty equation (1) 1is a.lgobraic and linear. ’ | | B %;;
= - IV. Ajproximate Solutions and the Boundary Value Problem. ;
'_ It is elmost imposgible to find the exact solutions of the system )
‘ of equations (13) to (17). Approximate solutions can however be obtainsd
- ' basad upon the fact that %Q is & very small guantity in the boundary layer |
flow. Ascording to ths Prandtl boundary layer approximations, whenever this
approximation applies, the order of magnitude of the dimensionless quanti= j
ties of meen flow properties are: ﬁ
. wWa o) p= ‘O‘-A<_\)' , P = ocC i ':
= om %—.*3 (velocity) = o) i
3% = o (&) 2Ts a() '
7 5 . % 2 I S I
, Y Sl YTV Re 23 -
oY ) y &
) where -Qg is the differsntiation operator along the x-direction,and does if:
. ,hot change. the ordér of megnitude of the quantity on which the operation is l
perrormed. | |
' * ' The methods of solving the disturbance equations for the com- "
. pressible problem and those for the incompressible problem ara‘esée,r'itiall;r
-9 the same. These methods utilize different ¥orms of the series expansion in E
terms of some convenient parameter related to (olRe) '.
;
g e e b3, e e e e o mw;;.ghw‘..;w“g
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' than the two obtained from equation (19) are obtained. The initial approx ox-

“%ions are identical with those given in reference 7. This series solution
¢ : .

1. me serios expansson of the solutions % n toras of GRE) '
the: most obu;ui oo, In the first approzinticn, the system of a.mm--’i S
ba.nce equn.tiom (13) o (17) can be rediced to & second order ordinary :
dirtemtm oqua*ion vith a aivguh.r point at Y = Se. vere w(Yd)=

'l'his oqution i
& fmecy @'~ _j__ - Hewe) o, '
dﬂl = Moo J T ci’ = (39)
is identical with the inviscid equation as given in reference 7. Therefore
two. indspendent solutions can be obtained from this asyrptotic expansion.
The higher order approximations cen be obtainad by successive qtadratures: r
%. Transform the dependent variesbles Z. by A
| ~%
2,‘ :f; exp [ &Re) J'fjA‘j] . L
‘ ) (20) 2 é
where g is a function independent of olRe, and fﬂ 48 expanded into : l‘ :
=3 - R
pover series of (ole) . Yowr indeperdent asymptotic solutions, other - | ia

Amations ars identical with thoae given in referencs 7.

,-\. .
3. Expand the variables Z. 1n terms of the powers of (oLRn-)
and trausfors the independent verisble from y to 1 = 32" where 3 ¢ gi).ac;.

Six_ #ets .of independent solutions can be obﬁin;g. The initial approxixa-

is cpnsideréd &8 convergent and is recognized as being able to give any da=

gree of sccuracy if sufficient number of terms ars taken in this & geriss.

As 1s well known, the proper selection of the epproximate soluticns

tc e ussd in the boundary value problem in the incompressible csse has bewn

'

/i
L

e




,'_"'f_;'"a. uem of comsitersble dlsyate. It 1s autlined. mmm# w .

' mmdmtmmnfmmmm“e nriu

a muu.taomuu-mrmmumm series. T

o 3. Seleet the proper asymtotic sries solutios to replsce the sor-

responding solutisns obtained froe £ series.. Jor example, mmmcm |

solutions cbtained from equation (19) can be used to reflace X;; amd X 5
that 1s, the third and the fourth cets of the £ serics solutions,

* ' Ve shall investigats the effect of the vertical velocity ccmpons

N 4nt and the gradionts in the x-direction on tha solutions of tihs disturbance
B equations (13) to (17) using the € sertes. :
Detine the paremeters €= GiReY ° and ps 252 {21y _
whave (4.3 %< . Bince & 18 in general complex; ¥e is also a complex quantity. |
Expand ail the mean flow quentities in Taylor series about the .
) eritical point y, thus:#
, - = AT (£ 4 Qz%'_; e %." - e
(1&’ E ’ g = g,_ + g:._ (ii'l-" + g‘%’(_g;rl')‘“-u .~ ;23) ‘

e T= TeeTlEn+ x 1(&’]7"—~~~~~ , (2h).
: ey ‘
LT T), 2 ) ‘
= o€ [+ WEP + ?—%«av,w---- I

PR " - . ‘ ' k
g e -

vy ---- ' | -f

#Ag pointed out receatly by C. C. Lin (reference 12) Taylor series ezpansions

for the mean flow quantitics about the critical point are not very sultable

for high Mach number flows, (M > 2, 3), or, one might add, for any flov acréss
& vhich there are large variations of verticity or temperaturs.
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' Bere '\f' JI etc. are a.l.. qua.utittes or the order ot ms.ty.

vla

. 1: mcugmsfbla ” tho ﬂ.uid domity is eonltmt o.nd.

T N m*c ae‘-.—;é;ig;:'_* SER E
= = which is. atill of ‘the order of wnity. e T s
!l ’ o As expuined ir. the. previous section the va.ria.tion of the mgni ~E
o tuls of the dlstuFbence has been separated into tWo parts; the fast vary- i g
ing part due to the wave propagation and the slowly varying part of the
i amplitude of oscillation. It is the amplitude function that enters the -
‘ X disturbance equation. Therefore we cin write 5 =
%=—R-3€= A € ; (26) _‘.;'
vhen the operator ;-;% will not change the order of magnitude of the o X
. ) quantity on which the operator is applied for both the mean flow qunntit;’gg
> and the digturbence emplitudés. With these facts in mind and 2lso the
relation %' ;‘% %a—'l- ; We cen determine the order of magnitude of each
é | term in equations (13) to (17) if proper series expunsioms for X% i
SR " toms of € are defined and if ol 1s of the order of unity. The following
Porms of the expensions of X; in terms of € are foupd tof'bo ~s'gu-c6nsisfb§nt§' ?

, . - ) ) 2 @)
: ) Ey= -F = X + EX, % E Xj #=:2°7

- € g,= e¥ = xf"-r- exd L & x;’z"...,;aa- B
el £z, = é'ifi= N L T ol Sy S )
A Z, = &= X2+ exg « & .
5 €= %+ ex + gtxgle -
& EZo= © = | ::s+ £ X, + erx M-
€%, = 2%= xe enls Exin
; Zg= Ea= Xg+ £X 4 £ %gh- (27)




By nubltit\rhing thiess serise (37) and oxpmiom (22) %o (25) inte eqmuom
' "'“‘*(13) 6 '"(i?) and eqmt.ing coofricionto or dirrmxrt powers of £, on»both a:ub:u

se .

of eacn acustion, We: abta.in 2 system of 11n.a.r ordinary diffarential: oqmtiom

Lrom which successive ~ordsr approximtiom can be i’ound. by quadratures.
" Equation 6'13!)- gives the. folloving simple relations

ax (o)
‘ZT A.-H
; (k!
d Xi (e) .
"“l = Xiay = 1.3.5 ana 7 (28)

© for the first and the K+!™ approximations respectively.

The continuity equetion {14) gives

First afproximation of thé GFGeF of £
i L d xio} R
X“a + 4 x, = oy J;l + A¥X =0 . (29)
Second Bpproxine.tion of the order of €
(1) I NN . !
KO © _ dx dxa @« - 4,-_“& X(f’-. _?.‘: , (o)
3(4 4 X&' = d)-} *. A Xy = Te Vl g f_;, X3 (30)
Third approximation of the order of €%
(D . Q) Ax¥ . @
4 A X,, = 3713- +4 X,
- iy g0
J -u?g" n:. -w T ®) o
+ L == e We Ve - ‘_.?c: - (o) r M
T 'l]’(s ('ﬁi )x3 A n'lx7
R C) '
+ wg‘ b ?;_’ X_ “,&‘ - N N . :
~ | ()

The verticai velocity ¢omponent begins to appear in the raontixmity, equation

at the third approximation of the order of £%. The next higher aspproxima-

tion of the order of £ will bring in tema involving the gradlents in the

x~direction.
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). G

W -5 [ '[x.“’»«xa‘"}— g‘*‘,—:}c"? =0 (32) :

) - Beeoxﬁ. &iﬁ;rmimtion of thi order ot £ . b
R O - 77 "’

M““ i ’q‘c"!\..x‘ -‘- x3 3 vt‘.‘. ,m_:g

R PR P ) (o) . ' !
=t 'Tc[ g—‘;_ 3 'To:]} (L X(: X3° ) ;

. :".'-- .‘7- ’ | : \ ’ ( ) ‘ -4 )

) -\r, ©)

Both the vertical_ velocity component \ and the temperature sensitivity

Lar Lt oo

£
%
;
e

%

of the viscosity coefficient enter into the first momentum equation at the

gj} S second hpproii;na.fion ofl the ordsr of €. ﬁ.!he next higher order approxima-f i

.‘t'ion €% will bring in terms involving the grediénts in the x-direction.

‘ The second momentum equation (16) gives r

Piret q.pproximatidn of the ordsr of g° _ :;

| Xy = “5{"’: o @)

B Becond approximation of the order of & g

w o ¥ ok

: ot Eee | G

| Third approximetion of the order of € , o

L Xg= xar[q-f‘;)d":‘v +(-L+&L‘-=)x,.) | o

-] | (36) :

It ':f.s on;y in the fourth approximation of the order of €> that the termus

} involving the vertical velocity component will appear, end the gradients in ’
; i IH the x~direction will coma in at the next higher epproximstion.
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f;a-(‘!‘g, Lff—-) (M] =0 )
e 5 Becom approzizs t1on of the order of & ;
e 37"" FoliwenXs +trm 22 by 53]
.y / . J
A {{ £ - T e PR o chx‘” ~
| ‘ 4 o) k.
Cl - -y S T ~'
EV':“ " i 5 s .
b ¥ ] o
Eiﬁ o T 4+ A Sy n.—)(;o * T '(Yg(o‘ } _ )
5 : Y=t E 1 (O )~ (G} [M l(o) ;_‘
. -G A 'lM X7 ~ 2T (M’ wc Xy = (dlapt) . -2T.'X
.(' Al gl o G.- 0 (O, R
j i - *7 (X4 © _xe ’ . (38) =
The vertical velocity component entsrs the energy equation at the second :
approximation of the order of €. The gradients in the x-diresction will )
~ “ appear in.the next highsr order approximation. .
N For the first approximation of the order of £° we have the fol~-
lowing set of differential equations. | 3
o (o) "
W aX (°)
. S 3. 3 — ,'x
i B L e (29). ;
s ~,~:'. d‘.x(c’~ -(Jc,' . (o) (o) P iO\ ’
E S T W I (32) k
R ! ) ‘ i
g d-_-,{%‘_’ . . L
! an T (34)
s d;x(o) . ’ Y1 L {
£ ' , 5 A T ) i () :;
4 : e~ Tl b w5 e Y% ] (37) !
,':; l’ a ' ‘These equetions are ldentical with those given in reference 7. By elimin- h
- O )
ating X; fram equations (29) and (32) one obtains a differential equation
for d n as follows: N
‘ £x Lo ax —o s
T 1 = (39) :
' ! N
! 2
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| m the s¥cond kind of ‘the order 1/3, vith a.rgmnt = @8
e ‘—vhero~-—5 = ‘:“"2 q"é“’,l"’f"*—-.".» R e o v s o

--  The six sets of independent iolutionl m obl'.ainod as:
X\ [uyLgasttrietar

| xoe J s raatren uc
Xig = 4 -
L T e e . (40)

Xie = Xyg = Xag =0

and equation (29) givea* after integration,

()] A
X m A <y {CJH%Igtw’Tc a4t - IH,,[ ugy ]z; }
- (©)

xu-u(q—)é{;ja [ranictar - (W ‘m;)/’]c a
§X33=°/‘vl:;;)v.’¢

1 (o
X34 = 4

K (o)

) .
X33 = X3¢ =0 (43)

. Bquation (37) can be used to solve for X; j o For j= 5, 6ay

(@) , ¢

)(35. = X3g = and oquation (37) boccmes homogensous and
. »(Ox) < A. )
, XS‘S [ 3 ( C U ] ,
(ol 1/2, Lo . -

Xs‘, i }§ [ 3 kAt) Q } (1#2)

When X,j with j#1, 2, 3 and 4 can be obtained by quadratiwe. The
formula for quadrature is . X
. 8 i T Xy - X [ en e
‘ _;,=-—_'(T¢,“'-'..,) Xs d 56"3 " \
Xsg= 37 R el e o Yoy A 7 el (k)
Por the £scond approxiiation, equations (30), (33), (35) and (38)

will be uged. The homo'geneoua parts of each of these wquations is the same
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i aqution for: the first epproximation. -

!Ehe 1nhunaom

ey e s

proxmt ons sna tho local volocita' and the local tempemtm'e profiles ag;

‘:—“. *‘”“Bﬂm axe kmwn fncticns. {avolving the solutions of th previous sp=

ao tawth Tharefore the: aecond e.ppmimtions can be obtained from the
.t‘mt approx;mntiou by qmd:ature with a formula amlogous to- equ&tion(hB)

E . . For example, if we evaluate XM y W8 differentiate equation (3 ) and uag :
3 {+)
%ﬁL . bquat—i:on (30) to eliminate f:t\ + We obtain the differential equation
E for X.4 vhose homogeneous part is the same as equation (30)
X
) (‘)
{ s _ i
i; d" '0|€. ‘l. dﬂ
3 ,z (o)
‘} - ‘wg xs ey __...__ .———P
E: . . — Q—:—(-l-i« e -"1*' ‘Q’ 'l( ar ) 54 j
:! - _Q:—‘ﬁi '(_»B’c"('c: A"T:. @) 4&" (> J
i av [ 25 « TR~ 30 B J{?—j (i) :
Y A, _ . . i
g ) In obtaining equation (44) the following values of the disturbance func-
ﬁ ' tions have been introduced: 5
A @ ' ©) ' (!
| éﬁ[ ) - _ X4 2o Yagg = O ond. X34 = I
- apd Y5, 18 %o be cbtainsd fram equation (43) with j= k.
_ ‘ W)

B Denote the right hand side of equation (M) by L ."u (1) the E
= L vy -

following formula can be used to obtain X ,'4,
E:;‘_:-,-— -:

o) (o) (o)
! ‘l 4 E d L 20 ~
Y:l: Lz’ J‘ AX'ZJ dx LQIG( )d-'l y] [ ‘;'('l L‘l"(‘l‘ &Nl} d\'l
_ (45)

‘The explicit :Eom of X::,) must contain a logar‘i’:&imig. term when

{0}

Lid
Bt

:«5:; g |
= R g
. : + \‘
- ' ’ 3
‘ ,
¥

A% ¥ i
- is la.rgv. Qualitatively, when‘q is large, the term Ar\s gives neg-
' )
ligible contributions as compared to 1} di‘“* and the solution of equatimm
(44) will beheve 1like ths solution of l o |
) - :
- “* s ;—3- b (46)
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& ihe coefficient,of this logaritimic term .4 ’4—‘2; by
:‘év known: funciion of the: local volocity ‘profils, The local mxpora.tm w.'o- o %
- f£ile and ( 2\.2‘!;-)6 , but does not depend on ths verticel velocity coms L—V %
poment.  Yo)  is obtained by integrating squation (45). The togertthe |-
M mic term will eppear in ngl as *LQ"‘ n and wili vanish near f,ha egtibtﬁ; .
. layer J_-> 3.-_ or *i-} o o The inviscid solution Q; which s used to i
replace ltl.;i"e ‘solution X;‘,’: + € X;:: has been shown in refisrence 7 to |
approach zeéro 8s (y-— 3,,):9». (Y- 9Ye) vhen y approaches Fg» The: coX'= ~‘ 2
responderice of these two solutions ave thuk made cleer: NEE
. The same procedure cen be used to find g‘;) vith j31, 2, 3, 5 i -:
. end 6. It is to be moticad that the vertical velocity component enters B
- | into these calculations only through the term- - 4 V- Y(:; . ‘Bince |
¥ L x‘f; _axd o for all values of J except J = 1, and 2, 1t fol- = - e
Tous.. that all thess functions Xi5 ,Xsa Xas  and ;! ace tntes a
pendient of the vertical velocity component. But ‘X,g and 3(3(: do Q8= - o {:«;
o pend on the vertical velocity component for both the compressivle and the.
e incompressille boundary layer flow. ~ ij ,
_,m S s locsl gradients of pressure and tempersture in the x-airection T E
, do not enter into the evaluation of these aisturbme anplituda runctimf"*’?‘“ ‘\?
| at the second approximetion of the order of €. The gradients in the X . ;
4 direction enter only vien we go to the order 6f £%. Therefore the effect Q
& of the vertica.l valocity component is more criticel than the effect -of the. ’
gredients in the x~direction in the stability celculstion. The effect of f

koo the vertical velocity component ghould be teken into account bslore the
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tians of the uaeubanco functions to be ussd-in the boundary valus probles .-

are of conaidamb.te izportancs. 8@1: s We take a.ll XJ from the é ioi“i"éi -

N Y - BN
and cons{stently take all #ix solutions to the order of € 1404 X; & X,

"“in the boundary walue. ,problq, then one sees tb.et the dependence of ‘the sol-

utions on the vertical velscity c_c'mpénéntl through X-;": and Y;';Z will not

be consistent with the simplification of assuming the ‘boundary layer £low

as a parallel f,iow. _
Fortunately, all the previous investigators ave eatisfiod with

{0} (o)
the first approximetion of the fwo "viscous. solutions" X3¢ and X3z ,

vhils they used Xoa*2X3 amd  Xj « £Xps  or the two
equivalent inviscid solutions, or the inviscid solutions corrected for vigw:
cosity in the boundary value problem. Thus the stability boundary as de-
termined by any of these methods will be _i,ndg_pogam{ of the vertical velocity
component axnd their results sre consistent with tlie assumption that boundary
layer flows are essentially parallel flows: But. the accuracy of the quanti-
tative determination of the stability boundary as carried -oizt—. in Freferences.
8 and 14 can nct be ixproved by taking gpr.o’ terms in the € series wiihoui:'
Ancluding the efféct of the vertical velocity component. )
Unfox;bunatel, 5 in some practicel cases, the peramwter € is ot
2 very small quantity near the minimum critical Reyriolds nuiber based j'*an'

boundary layer thickness. The Reynolds number may be only 1000 while ol ie

about unity. Thus € is only 1/10. In such cases it may be necessary for
accurate quentitative determination of the stability limit end the amplifica-
tion rates to go to the next spproximation, in which case the effect of the

vertical velocity component must be included.
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In &uittu, at very high lhch ausbers; the mt:lul ﬂlneztr

'cmntmtmuwrylwcruotmomrot M/Res

(rcforonco 13) And my omr m stlbmty problem of tm luimr +4
h;yor even in tmt appmxmtion. nm quntioa roqu:lros cmm inveg~

?fm o tigation tsfore any mtma‘u can be mude about. the stability of the hyper-
g . somnie lanimr boundary layer.
3
N

IV, Conclusions

1. The vertical velocity component is the mogt eritissl fadbor that

‘ is neglected in previous stability invesiigetions of the laminar
boundary layer flow. It is Justifiabls To consid:r the boundary

. leyor flow as parallsl flow snd nsglect V- only vhen the viscous
- soluticus X;, and Xi, are taken to bo the first approximation of
i ﬁ* | theoréax; of €° in the € series as is dons by &1l the previocus
L ' investigators.

+ 5? 2. The local pressure gradignt and the local temperature gradient in
1 " the x-direction are less critical than the vertical velocity com-
ponant in the determination of the stability boundary. These

local gradients in the x-diroction enter only to the order of e,
~. ) 4
or (o(R.o.) ;

17 3. The stability of the leminar boundary layer is determined ouly by

h]

¥

£

g&

E o the local flov prcperties for both the compressible and the in-
g =t compraszible flow within the order of appraximation attempted by
g

. v . ~
N Waruriiin? | el N WAL AL

previous investigators. In othar words ths loeal pressure grad-
ient and the local temperature gradient and the vertical veloeily

componsrt of ths bowmdary layer fiocw will not affect the caleulation
’ of the stability boundary in the firet approximation, provided




thei the Zooal valosity profile and the local tepersture profile

are used in the stability calculition. Toese loal Yelosity and

sevatire profiles are of course intimAtily comnécted with

the history of ths upstream presswre gradient an the heat transfer
conditions along the wall. As is pointed out in reference 9, this
conciugion is of great practical f..npor;tance for the determination of the
beginning point of the instebility of the laminar boundary layer flow

R e

%
J over an airfoil, and also for ths calculation of the rates of growth
. of the small disturbances downstreamd the stability limit within the
Pramevwork of the linsarized small perturbation theoxy-
oA
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7 the author wishes to sxiress his thanks to Brofessor Lester Leaw
_ ! o

of Princeton University for suggesting the problem and for his advice:
throughout the work. ‘ '
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